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Segmenting the Dynamic Contrast-Enhanced Breast Magnetic Resonance Images (DCE-BMRI)
is an extremely important task to diagnose the disease because it has the highest speci¯city when
acquired with high temporal and spatial resolution and is also corrupted by heavy noise, outliers,
and other imaging artifacts. In this paper, we intend to develop e±cient robust segmentation
algorithms based on fuzzy clustering approach for segmenting the DCE-BMRs. Our proposed
segmentation algorithms have been amalgamated with e®ective kernel-induced distance measure
on standard fuzzy c-means algorithm along with the spatial neighborhood information, entropy
term, and tolerance vector into a fuzzy clustering structure for segmenting the DCE-BMRI. The
signi¯cant feature of our proposed algorithms is its capability to ¯nd the optimal membership
grades and obtain e®ective cluster centers automatically by minimizing the proposed robust
objective functions. Also, this article demonstrates the superiority of the proposed algorithms for
segmenting DCE-BMRI in comparison with other recent kernel-based fuzzy c-means techniques.
Finally the clustering accuracies of the proposed algorithms are validated by using silhouette
method in comparison with existed fuzzy clustering algorithms.

Keywords: Fuzzy clustering; algorithms; entropy method; segmentation; medical images.

1. Introduction

Medical images are a standard tool for identifying a
variety of cancers, tumors, and lesions in the
medical ¯eld. Particularly, breast cancer is a leading
cancer causing women mortality. Identifying the
early stage of cancer is essential in controlling the
mortality rate. At the initial stage, X-ray imaging is

used to obtain information about the breast cancer
without surgery. In recent years, Magnetic Reson-
ance Imaging technique has been used to ¯nd the
anatomic structure of breast cancer, because it is
non-invasive and it has more contrast between the
tissues. More recently, to di®erentiate similar signal
behaviors, the dynamic contrast-enhanced MRI
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(DCE-MRI) is used e®ectively. Further, the
DCE-MRI of the breast is an important imaging
technique for early breast cancer detection.1

Though DCE-MRI2,3 is used in clinical practice for
diagnosing diseases, it has considerable limitations.
The images are highly a®ected because of breathing
of patient, intensity inhomogeneities, partial
volume e®ect, and other noises. So it is very
important to segment4�7 the images before it goes
for diagnosing the breast-related diseases. Initially,
medical images have been segmented manually, but
the manual segmentation consumes more time, and
sometimes human errors occurred during segmen-
tation. So researchers have introduced mathematics-
assisted automated segmentation methods for
segmenting the breast medical images.

This paper tries to develop clustering-based seg-
mentation method for segmenting medical images.
Cluster analysis is the organization of a collection of
elements into clusters based on similarity. The data
elements within a cluster are more related than the
data elements in the other clusters. The hard8 par-
titioning controls every data element in the dataset
to precisely one cluster, but fuzzy partitioning
permits each data element to all the clusters
with di®erent meaningful membership degrees. It
formulates the fuzzy clustering segmentation tech-
nique to be capable of preserving more information
from the original image than the hard segmentation
technique. Further, the fuzzy clustering approach of
segmentation algorithm9,10 without necessitating
any prior information, and segmentation is done
with the information extorted from the image itself.
In recent years, Fuzzy c-Means (FCM) algorithm
has gained much attention for segmenting medical
images by various researchers in the ¯eld of image
segmentation.11,12 Even though the conventional
FCM algorithm works well in spherical clusters, it
su®ers because of Euclidean distance. FCM algor-
ithm has considerable trouble while using Euclidean
distance for segmenting images which are corrupted
by noises and other imaging artifacts. The conven-
tional FCM algorithm is independent of spatial
information of pixels in the image, but the pixels in
the image are highly correlated and the spatial
relationship of neighboring pixels is an essential
characteristic in image segmentation. This nature of
FCM provides the noisy segmented results.13�17 To
overcome these drawbacks, many researchers have
developed new modi¯ed FCM which is incorporated
by the concepts such as kernel trick, additional

term, penalty term, entropy term, and spatial
neighborhood information terms. To increase the
segmentation ability, Zhang and Chen18 formulated
kernel-based FCM with spatial constraint term
(KFCM-S), which is based on the concept of kernel
trick and neighborhoods of pixels. In Ref. 12, Siyal
and Yu proposed modi¯ed FCM for automated
segmentation of medical images to deal with the
intensity inhomogeneities and Gaussian noise
e®ectively. A modi¯ed FCM with spatial infor-
mation was introduced in Ref. 13 to reduce the
noisy elements in the dataset. A spatially con-
strained kernel clustering method was introduced in
Ref. 19 to speed up the algorithms in clustering
images. Yang and Tsai20 introduced Gaussian ker-
nel-based FCM algorithm (GKFCM) with a spatial
bias correction to prevail over the shortcoming of
computational time required and lack of enough
robustness to noise and outliers. To improve the
segmentation process, Zanaty et al.21 proposed
alternative Kernelized FCM algorithms (KFCM),
which include the spatial information into the
membership function of FCM. Kang et al.22 devel-
oped an adaptive weighted averaging FCM (AWA-
FCM) algorithm in which the spatial in°uence of
the neighboring pixels on the central pixel is included
in the segmentation process. To improve the
smoothness toward piecewise-homogeneous seg-
mentation and reduce the edge-blurring e®ect,Wang
et al.23 proposed adaptive spatial information-the-
oretic clustering (ASIC) algorithm, which is
obtained by incorporating spatial constrains to
FCM. To remove the bias ¯eld, Sikka et al.24 intro-
duced new modi¯ed FCM algorithm for medical
image segmentation. Although the above algorithms
provide good results in image segmentation, their
performance depreciates promptly when the noise
level is ampli¯ed. Usually theGaussian function25�27

is used as kernel trick in many modi¯ed KFCM
algorithms. The computational cost is quite high for
large datasets and fails to eradicate the heavy noises
while using the Gaussian function.

To surmount these limitations, this paper pro-
poses two e®ective KFCM27�29 which incorporate
the perception of tolerance vector30�33 and entropy
term34�36 for segmenting the DCE-BMRIs. Further,
this paper introduces a novel e®ective kernel func-
tion for the kernel trick of proposed algorithm.
Addition of tolerance vector in each pixel of DCE-
BMRI in the proposed algorithms for removing
the pixel-level noises and smoothing the boundaries
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between two tissue classes of breast MRI has been
performed. Also, the incorporation of spatial
neighborhood term in the proposed algorithm has
been done to ¯lter out noise and other image arti-
facts and reduce classi¯cation ambiguities. The new
e®ective kernel function is employed to provoke a
class of robust non-Euclidean distance measures for
the original data space for deriving new objective
functions and thus clustering the non-Euclidean
structures in data. Besides, it augments the
robustness of the original clustering algorithms to
noise and outliers, and it decreases the compu-
tational complexity. The e±cacy and robustness of
the proposed algorithms are revealed through the
experimental results on DCE-BMRI.

The remainder of this paper is structured as fol-
lows. In Sec. 2, we illustrate the notion of Kernelized
and entropy-based FCM with tolerance. Sub-
sequently, we propose a new robust spatially con-
strained kernelized FCM algorithms named as
SKFCMT and SKFCMTER in Sec. 3. The exper-
imental comparisons are presented in Sec. 4. Finally,
Sec. 5 gives our conclusions.

2. Notion of Kernelized and

Entropy-Based FCM with
Tolerance

The objective function of FCM for partitioning a
dataset fxign

i¼1 into c clusters is given by

JfcmðU ;V Þ ¼
Xn
i¼1

Xc
k¼1

um
ikd

2
ik;

where dik ¼ jjxi � vkjj; ð1Þ
where V ¼ fvkg c

k¼1 is the set of cluster centers and
the array U ¼ ½uik�n�c represents the partition
matrix which is satisfying the following conditions

Xc
k¼1

uik ¼ 1; 1 � i � n where 0 � uik � 1 ð2Þ

0 �
Xn
i¼1

uik � n: ð3Þ

The parameter m > 1 is the weighting exponent
which controls the noise sensitivity and the level of
the e®ect of membership grade in the computation
of cluster centers. Most commonly the gray-level
value or intensity feature of image pixel is used
in image clustering. Thus, when high membership

values are assigned to pixels whose intensities are
close to the cluster center of its particular class, and
low membership values are assigned whose inten-
sities are far from the cluster center, the objective
function of FCM is minimized by using Lagrangian
multiplier's method.

In general, by minimizing the objective function,
we can get the fuzzy membership functions uik and
cluster centers vk as follows:

uik ¼
1

d2ðxi;vkÞ
� � 1

m�1

P c
j¼1

1
d2ðxi;vjÞ
� � 1

m�1

i ¼ 1; 2; . . . ;n
k ¼ 1; 2; . . . ; c

ð4Þ

vk ¼
Pn

i¼1 u
m
ikxiPn

i¼1 u
m
ik

: ð5Þ

There exist image pixels in real images that are
ambiguous and they cannot be classi¯ed consist-
ently based on feature attribute(s) alone. Thus the
tolerance vector is added with each pixel for getting
consistent classi¯cation of the image pixels. Then
we obtain the objective function of fuzzy c-means
with tolerance (FCM-T) as follows:

Jfcm tðU ;V ; �Þ ¼
Xn
i¼1

Xc
k¼1

um
ikjjxi þ � i � vkjj2: ð6Þ

Subject to the constraint

jj� ijj2 � �2
i ð�2

i > 0Þ ð7Þ
where �i is the maximum tolerance of � i and
�i 2 Rþ.

The above notion can be minimized by
Karush�Kuhn�Tucker (KKT)32 method; by mini-
mizing the Eq. (6) we obtain the following:

Membership grade uik ¼
1P c

j¼1
jjxiþ� i�vkjj2
jjxiþ� i�vjjj2
� � 1

m�1

:

ð8Þ
Updating equation for center is

vk ¼ U �1
k

Xn
i¼1

um
ikðxi þ � iÞ; ð9Þ

where Uk ¼
Pn

i¼1 u
m
ik.

The tolerance vector is calculated by using

� i ¼ ��i

Xc
k¼1

uikðxi � vkÞ
 !

; ð10Þ
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where

�i ¼ min �i

Xc
k¼1

um
ikðxi � vkÞ

�����
�����
�1

;
Xc
k¼1

um
ik

 !�1
( )

:

In order to cluster nonlinear structured datasets
of images, the kernel trick is introduced to FCM-T
by replacing Euclidean distance in FCM-T. The
notion of objective function of Kernelized Fuzzy
c-Means with Tolerance (KFCM-T) is

Jkfcm tðU ;V ; �Þ ¼
Xn
i¼1

Xc
k¼1

um
ikjj’ðxi þ � iÞ � ’ðvkÞjj2:

ð11Þ
Here

jj’ðxi þ � iÞ � ’ðvkÞjj2

¼ h’ðxi þ � iÞ � ’ðvkÞ; ’ðxi þ � iÞ � ’ðvkÞi ð12Þ
and

h’ðxi þ � iÞ; ’ðvkÞi ¼ Gðxi þ � i; vkÞ ð13Þ
jj’ðxi þ � iÞ � ’ðvkÞjj2

¼ Gðxi þ � i;xi þ � iÞ þGðvk; vkÞ
� 2Gðxi þ � i; vkÞ: ð14Þ

Since the Gaussian kernel Gðxi þ � i;xi þ � iÞ ¼ 1,
the objective function of KFCM-T in Eq. (11) can
be rewritten as

Jkfcm tðU ;V ; �Þ ¼ 2
Xn
i¼1

Xc
k¼1

um
ik½1�Gðxi þ � i; vkÞ�:

ð15Þ
In a similar way to the standard FCM-T algorithm,
the objective function in Eq. (15) is minimized
under the constraint of U and � . By using the KKT
conditions for uik, vk and � i, we obtain membership
grade, updating cluster center and updating toler-
ance vector as follows:

uik ¼
1P c

j¼1
½1�Gðxiþ� i;vkÞ�
½1�Gðxiþ� i;vjÞ�
� � 1

m�1

; ð16Þ

v
ðtÞ
k ¼ U �1

k

Xn
i¼1

um
ikGðxi þ � i; v

ðt�1Þ
k Þðxi þ � iÞ; ð17Þ

where Uk ¼
Pn

i¼1 u
m
ikGðxi þ � i; v

ðt�1Þ
k Þ and t is the

iteration count.

� i ¼ ��i

Xc
k¼1

um
ikðxi � v

ðt�1Þ
k Þ

 !
; ð18Þ

where

�i¼min �i

Xc
k¼1

um
ikGðxiþ� i;v

ðt�1Þ
k Þðxi�v

ðt�1Þ
k Þ

�����
�����
�1

(
;

Xc
k¼1

um
ikGðxiþ� i;v

ðt�1Þ
k Þ

 !�1
)
:

To prevent the trivial solutions within the scope of
KFCM-T and to control the cluster volume sizes, an
entropy term is added with KFCM-T as additional
term.

We introduce entropy term with Lkfcm t as
follows:

Jekfcm tðU ;V ; �Þ ¼
Xn
i¼1

Xc
k¼1

uikGðxi þ � i; v
ðt�1Þ
k Þ

þ ��1
Xn
i¼1

Xc
k¼1

uik loguik:

ð19Þ
The objective function Eq. (19) is minimized itera-
tively and membership function, cluster center, and
tolerance vector are obtained as follows:

uik ¼
Xc
j¼1

expð��Gðxi þ � i; vjÞÞ
 !�1

� expð��Gðxi þ � i; vkÞÞ ð20Þ

v
ðtÞ
k ¼ U �1

k

Xn
i¼1

uikGðxi þ � i; v
ðt�1Þ
k Þðxi þ � iÞ; ð21Þ

where

Uk ¼
Xn
i¼1

uikGðxi þ � i; v
ðt�1Þ
k Þ

�
ðtÞ
i ¼��i

Xn
i¼1

uikGðxi þ �
ðt�1Þ
i ;v

ðt�1Þ
k Þðxi � v

ðt�1Þ
k Þ

" #
;

ð22Þ
where

�i¼min �2
i

Xc
k¼1

uikGðxiþ� i;v
ðt�1Þ
k Þ xi�v

ðt�1Þ
k

��� ���
" #�1

;

(

Xc
k¼1

uikGðxiþ� i;v
ðt�1Þ
k Þ

" #�1
)

The parameters �, �, and � are adjustable by users.
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3. Spatially Constraint KFCM
Algorithms for Image Segmentation

Although the Standard FCM algorithm works well
on most noise-free images, it has serious limitations:
it does not incorporate any information about
spatial context, which causes it to be sensitive to
noise and imaging artifacts and it su®ers from poor
performance if the separation boundaries between
tissues are nonlinear. Further Standard FCM fails
to advance the similarity measurement of the pixel
intensity and the center of clusters, since it has not
taken into account the neighborhood magnetic
¯elds.

To solve the problems, this section proposed an
e®ective FCM to advance the similarity measure-
ment of the pixel intensity and the center of clusters
by considering neighborhood magnetism to segment
the nonlinear boundaries between the tissues. This
section develops the e®ective method for segment-
ing DCE-BMRIs based on the concept of kernel
trick, tolerance, entropy term, and spatial penalty
term. The entropy term will advance the similarity
measurement of the pixel intensity and the center of
clusters, and the penalty terms act as a regularizer to
regularize the solution toward piecewise-homogeneous
labeling. The main purpose of using the kernel tricks is
to cluster the non-Euclidean structured pixel data by
inducing a set of robust non-Euclidean distance
measures for the original data space.

3.1. Gaussian kernel function
measure with new distance

In recent years, a number of powerful kernel-based
learning machines were used for solving the problem
of nonlinear structured data. It has successfully
been applied in the ¯eld of pattern recognition and
image processing.

A nonlinear mapping of original data space into
high-dimensional feature space S has been employed
in the studies of kernel method for having nonlinear
classi¯cation boundaries. The nonlinear mapping is
de¯ned as

’ : Rp ! S: ð23Þ
Here an object x is mapped into S and

’ðxÞ ¼ ð’1ðxÞ; ’2ðxÞ; . . .Þ; ð24Þ
where ’ðxÞ may have the in¯nite dimension, even x
is the p-dimensional vector. The kernel function can

be expressed in terms of inner product of high-
dimensional feature data as

Gðx; yÞ ¼ h’ðxÞ; ’ðyÞi: ð25Þ
The function Gðx; yÞ is known as kernel function
and is de¯ned as

Gðxi þ � i; vkÞ ¼ exp � dðxi þ � i; vkÞ
�2

� �
; ð26Þ

where � is the adjustable parameters of the above
kernel functions.

Generally, the usual Euclidean distance is used in
Gaussian function. But in order to reduce the dis-
tortions in the pixels of images, we used
Bray�Curtis distance instead of usual distance to
measure Gaussian function. Bray�Curtis distance
appears to have more utility than other distance
measures and is given by

dðxi þ � i; vkÞ ¼
Pp

q¼1 jxiq þ � iq � vkqj2Pp
q¼1 jxiq þ � iq þ vkqj2

:

3.2. Spatial constraint-based KFCM

with tolerance

This method is derived from the conventional FCM
by incorporating the concept of tolerance vector,
kernel function, and spatial penalty term. To obtain
consistent classi¯cation of image pixels that are
ambiguous, the tolerance vector is added with each
pixel of images that are to be segmented. For
avoiding poor accuracy in segmentation of images
that are a®ected by noise, outliers, and other ima-
ging artifacts, we modify the objective function of
FCM-T by incorporating the spatial penalty term
containing the neighborhood informations of each
pixel. And, the kernel trick is introduced into pro-
posed FCM-T in order to ¯nd the structure of
nonlinear pixel data. The e®ective objective func-
tion for SKFCMT is given by

JSKFCMTðU ;V ; �Þ

¼ 2
Xn
i¼1

Xc
k¼1

um
ik½1�Gðxi þ � i; vkÞ� þ

2�

NR

�
Xn
i¼1

Xc
k¼1

um
ik

X
r2NI

ð1� urkÞm; ð27Þ

where (� ¼ �X=c) and NI stands for the set of
neighboring pixels that exists in a window around
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xi (do not include xi itself) and NR is the cardinality
of NI ; � controls the e®ect of the neighborhood pen-
alty term for each pixel and to have desirable mem-
bership function for each pixel. In a similar way to
FCM-T, Eq. (27) is solved by using theKKTmethod.

3.2.1. Obtaining membership grade

To ¯nd well-de¯ned membership grade for every pixel,
¯rst we consider the KKT condition for uik. (i.e.) the
condition @JSKFCMT

@uik
¼ 0, we get membership grade as

uik¼
1P c

j¼1

½1�Gðxiþ� i;vkÞ�þ 2�
NR

P
r2NI

ð1�urkÞm
½1�Gðxiþ� i;vjÞ�þ 2�

NR

P
r2NI

ð1�urjÞm
� � 1

m�1

:

ð28Þ
The membership grade of each pixel to the cluster
center is updated using Eq. (28), which represents the
probability of ith pixel belonging to kth cluster.
Because of adding the tolerance with each pixel and
containing the neighborhood informations, this mem-
bership grade of pixel depends not only upon its own
intensity but also on that of the nearest pixels of each
pixel xi. This approach diminishes the e®ect of heavy
noise on an image pixel.

3.2.2. Updating equation for cluster centers

The updating equation of cluster center helps the
algorithm to work well and converge the optimal
solution with less iterations. The e®ective updating
equation for cluster center is obtained by using
KKT method.

Solving the minimization problem Eq. (27) for vk,

using the KKT condition @JSKFCMT

@vk
¼ 0, we can get

cluster center as

v
ðtÞ
k ¼ U �1

k

Xn
i¼1

um
ikGðxi þ � i; v

ðt�1Þ
k Þyðxi þ � i; v

ðt�1Þ
k Þðxi þ � iÞ

" #
;

ð29Þ
where

Uk ¼
Xn
i¼1

um
ikGðxi þ � i; v

ðt�1Þ
k Þyðxi þ � i; v

ðt�1Þ
k Þ;

such that

yðxiþ � i;vkÞ

¼
Pp

s¼1 jxisþ � isþ v
ðt�1Þ
ks j2þjxisþ � is� v

ðt�1Þ
ks j2

� �
Pp

s¼1 jxisþ � isþ v
ðt�1Þ
ks j2

� �
2

:

These cluster centers quickly approach desired
position in the ¯nal clusters. This allows the ex-
ecution of algorithm in a robust manner.

3.2.3. Obtaining value for tolerance

The tolerance vector is used to get clear boundaries
between tissues of breast image during the process
of segmenting DCE-breast MRI. The tolerance
vector value is obtained by solving the minimization
problem of (27) using the KKT conditions for

� i
@JSKFCMT

@� i
¼ 0 and �i

@JSKFCMT

@�i
¼ 0:

�
ðtÞ
i ¼ ��i

xi

Xc
k¼1

um
ikGðxi þ �

ðt�1Þ
i ; vkÞ

� yðxi þ �
ðt�1Þ
i ; vkÞ

�
Xc
k¼1

um
ikGðxi þ �

ðt�1Þ
i ; vkÞ

� y 0 ðxi þ �
ðt�1Þ
i ; vkÞvk

2
666666664

3
777777775
; ð30Þ

where

�i ¼ min

�2
i

xi
Xc
k¼1

um
ikGðxi þ �

ðt�1Þ
i ; vkÞ

� yðxi þ �
ðt�1Þ
i ; vkÞ

�������
2
64

�
Xc
k¼1

um
ikGðxi þ �

ðt�1Þ
i ; vkÞ

� y
0 ðxi þ �

ðt�1Þ
i ; vkÞvk

�������
3
75

�1

;

Xc
k¼1

um
ikGðxi þ �

ðt�1Þ
i ; vkÞ

� yðxi þ �
ðt�1Þ
i ; vkÞ

2
64

3
75

�1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

where

yðxi þ � i; vkÞ ¼

Pp
s¼1ðjxis þ �

ðt�1Þ
is þ vksj2

þ jxis þ �
ðt�1Þ
is � vksj2Þ

ðPp
s¼1 jxis þ �

ðt�1Þ
is þ vksj2Þ2

y 0ðxi þ � i; vkÞ ¼

Pp
s¼1ðjxis þ �

ðt�1Þ
is þ vksj2

� jxis þ �
ðt�1Þ
is � vksj2Þ

ðPp
s¼1 jxis þ �

ðt�1Þ
is þ vksj2Þ2

:

The above minimization problem is summarized as
follows.

3.2.4. Algorithm for SKFCMT

Step 1. Fix value for the number of cluster c, the
maximum tolerance set � for data X and
m. Assign the initial values for � and V.
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Step 2. Evaluate membership grade by using
Eq. (28).

Step 3. Update tolerance by using Eq. (30).

Step 4. Update cluster center by using Eq. (29).

Step 5. Verify the stopping criterion for JðU ;V ; �Þ.
If the criterion is not satis¯ed, repeat
Steps 2–4.

3.3. Spatial constraint-based Kernel

FCM with tolerant entropy
regularized term

In this subsection, we proposed the spatial
constraints-based Kernel Fuzzy c-Means with Tol-
erant Entropy Regularized Term (SKFCMTER) for
obtaining well segmentation technique to segment
the DCE-breast MRIs. To improve the clustering
e®ect, the entropy term has been added with the
above algorithm. The entropy is considered as the
special form of describing uncertainty of pixels. So it
regularizes the process of clustering technique,
especially in the case of pixel data with uncertainty.
The incorporation of spatial constraint term into
this proposed algorithm can ¯lter the noise, outliers,
and other imaging artifacts and reduce the classi¯-
cation vagueness. The proposed algorithm is
obtained by minimizing the following objective
function iteratively

JSKFCMTERðU ;V ; �Þ

¼ 2
Xn
i¼1

Xc
i¼1

uik½1�Gðxi þ � i; vkÞ�

þ 2�

NR

Xn
i¼1

Xc
k¼1

um
ik

X
r2NI

ð1� urkÞm

þ ��1
Xn
i¼1

Xc
k¼1

uik loguik: ð31Þ

The constraint for membership grade and tolerance
are same as the previous algorithms. In a similar
way to FCM-T, Eq. (31) is solved by using the KKT
method.

3.3.1. Obtaining membership grade

To obtain a membership grade for each pixel, ¯rst
we consider the KKT zero-gradient condition for uik

(i.e.) @JSKFCMTER

@uik
¼ 0. Then we get,

uik ¼
1

P c
j¼1

exp �½1�Gðxiþ� i;vkÞ�þ 2�
NR

P
r2NI

ð1� urkÞm
� �

exp �½1�Gðxiþ� i;vjÞ�þ 2�
NR

P
r2NI

ð1� urjÞm
� �

0
@

1
A

1
m�1

:

ð32Þ
The membership grade for assigning the pixel to
concern cluster is calculated by Eq. (32).

3.3.2. Updating equation for cluster centers

The cluster centers are used to capture the structure
of the data in each cluster. Generally, an accuracy of
clustering result depends on the cluster center. We
can obtain the e®ective updating equation for
cluster center by minimizing Eq. (31) using the

KKT condition @JSKFCMTER

@vk
¼ 0. By solving the mini-

mization problem for vk, we get the cluster center as

v
ðtÞ
k ¼ U �1

k

Xn
i¼1

uikGðxi þ � i; v
ðt�1Þ
k Þ

� yðxi þ � i; v
ðt�1Þ
k Þðxi þ � iÞ

2
64

3
75;
ð33Þ

where

Uk ¼
Xn
i¼1

uikGðxi þ � i; v
ðt�1Þ
k Þyðxi þ � i; v

ðt�1Þ
k Þ;

where

yðxiþ � i;v
ðt�1Þ
k Þ

¼
Pp

s¼1ðjxisþ � isþ v
ðt�1Þ
sk j2þ jxisþ � is� v

ðt�1Þ
ks j2ÞPp

s¼1 jxisþ � isþ v
ðt�1Þ
ks j2

� �
2 ;

where t is the iteration count.
The cluster center is updated by using Eq. (33).

It is a robust workup of the clustering process.
Further, it reduces the computational time and
leads the algorithm to converge to the solution with
less iteration.

3.3.3. Obtaining value for tolerance

The tolerance value is very important in the DCE-
breast MR image segmentation to obtain clear
boundaries between the tissues. The tolerant value
is obtained by using the KKT condition for

� i
@JSKFCMTER

@� i
¼ 0 and �i

@JSKFCMTER

@�i
¼ 0. By solving
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these conditions, we can get,

�
ðtÞ
i ¼��i xi

Xc
k¼1

uikGðxiþ �
ðt�1Þ
i ;vkÞyðxiþ �

ðt�1Þ
i ;vkÞ

"

�
Xc
k¼1

uikGðxiþ �
ðt�1Þ
i ;vkÞy 0ðxiþ �

ðt�1Þ
i ;vkÞvk

#
;

ð34Þ
where

�i ¼ min

�2
i

xi

Xc
k¼1

uikGðxi þ �
ðt�1Þ
i ; vkÞ

� yðxi þ �
ðt�1Þ
i ; vkÞ

�������
2
64

�
Xc
k¼1

uikGðxi þ �
ðt�1Þ
i ; vkÞ

� y 0ðxi þ �
ðt�1Þ
i ; vkÞvk

�������
3
75

�1

;

Xc
k¼1

uikGðxi þ �
ðt�1Þ
i ; vkÞ

� yðxi þ �
ðt�1Þ
i ; vkÞ

2
64

3
75

�1

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

where

yðxi þ �
ðt�1Þ
i ; vkÞ ¼

Pp
s¼1ðjxis þ �

ðt�1Þ
is þ vksj2

þ jxis þ �
ðt�1Þ
is � vksj2Þ

ðPp
s¼1 jxis þ �

ðt�1Þ
is þ vksj2Þ2

y 0ðxi þ �
ðt�1Þ
i ; vkÞ ¼

Pp
s¼1ðjxis þ �

ðt�1Þ
is þ vksj2

� jxis þ �
ðt�1Þ
is � vksj2Þ

ðPp
s¼1 jxis þ �

ðt�1Þ
is þ vksj2Þ2

:

From the above discussion, we obtain the following
iterative algorithm.

3.3.4. Algorithm for SKFCMTER

Step 1. Fix value for the number of cluster c, the
maximum tolerance set � for data X and
�. Set the initial values of � and V.

Step 2. Update membership grade by using
Eq. (32).

Step 3. Update cluster center by using Eq. (33).

Step 4. Update tolerance by using Eq. (34).

Step 5. Verify the stopping criterion for
JðU ;V ; �Þ. If the criterion is not satis¯ed,
repeat Steps 2–4.

4. Experimental Study

In this section, we illustrate some experimental results
to compare the segmentation performance of spatially
constraints KFCM (KFCM-S), SKFCMT, and
SKFCMTER. To show the performances of the three
algorithms under noises on the real DCE-BMRIs, we
apply the algorithms for segmenting left and right
DCE-BMRI and proton density left and right ce-
BMRIs given in Figs. 1(a), 1(b) and Figs. 2(a), 2(b),
respectively. We test the performance of the algor-
ithms when the images corrupted by \Gaussian"
noises shown in Figs. 1(c), 1(d) and Figs. 2(c), 2(d). It
is clear from Figs. 1, 2(e) and 2(f) KFCM-S has poor
performance in the presence of Gaussian noise. From
the Figs. 1 and 2(g)�2(j), it is clear that the proposed
kernel versionswith spatial constraints are superior to
the corresponding classical algorithm. On the whole,
our proposed algorithm achieves better segmentation
results under Gaussian noise.

Table 1 lists the segmentation accuracy of the
three algorithms on left and right DCE-BMRI noisy
images, where segmentation accuracy is de¯ned
using silhouette value in Refs. 37 and 38.

The silhouette accuracy sðiÞ of the object i is
derived by the equation

sðiÞ ¼ vðiÞ � wðiÞ
maxfvðiÞ;wðiÞg :

For each object, we denote by the cluster to which it
belongs and compute

vðiÞ ¼ 1

jGj � 1
X

j2G;i6¼j

dði; jÞ:

The equation vðiÞ is the average distance between
the ith data and all other objects in the cluster G.
Now consider a second cluster H di®erent from G
and put

dði;HÞ ¼ 1

jHj
X
j2H

dði; jÞ ¼ average dissimilarity of :

i to all objects of
H and H 6¼ G:

After computing dði;HÞ for all H, we take the
smallest of those.

wðiÞ ¼ min
H 6¼G

d ði;HÞ:

The cluster B which attains this minimum [that is
dði;BÞ ¼ wðiÞ� is called the neighborhood of object
i, this is the second best cluster for object i.
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These silhouette average values measures the clus-
tering strength in the clustering assignment of a par-
ticular observation, with well-clustered observations
having values near 1 and poorly clustered observations
having values near �1.

From Table 1, the best clustering validities
0.77 and 0.78 were obtained for our SKFCMTER
during the experimental work on DCE-breast

Magnetic Resonance Images. Further, it is clear
from Figs. 1 and 2(g)�2(j) that our proposed seg-
mentation algorithms succeeded well in correcting
and classifying the breast data and the algorithms
almost completely eliminate the e®ect of noise in
images. The clustering algorithms presented in this
study are advantageous in that it should be robust
to cluster more general-shaped datasets.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Segmentation results. (a, b) DCE-left and right BMRI. (c, d) Corrupted by Gaussian noise. (e, f) Segmentation result by
KFCM-S. (g, h) Segmentation result by SKFCMT. (i, j) Segmentation result by SKFCMTER.
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4.1. Performance of proposed methods
in computational time

To show the e®ective of proposed methods in redu-
cing the computational time for running the algor-
ithm this subsection describes the experimental
results on arti¯cial image which is generated by
random data given in Figs. 3(a) and 3(b).

Our ¯rst experiment introduces the Standard

FCM algorithm to an arti¯cial image which is gen-

erated by random data. The image with 14 objects

includes two classes with intensity values taken from

1 and 14. We test the algorithms' performance when

the given image in Fig. 3(b) is corrupted by improper

order. Figure 4(a) gives the segmentation result of

(g) (h)

(i) (j)

Fig. 1. (Continued)

(a) (b)

Fig. 2. Segmentation results. (a, b) ce-left pd-BMRI and right pd-BMRI. (c, d) Corrupted by Gaussian noise. (e, f) Segmentation
result by KFCM-S. (g, h) Segmentation result by SKFCMT. (i, j) Segmentation result by SKFCMTER.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 2. (Continued)
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Table 1. Segmentation accuracies.

No. of Silhouette value of Accuracy of Silhouette value Accuracy of ce-BMRI
Name of algorithms clusters DCE-BMRI DCE-BMRI (%) of pd-ce-BMRI (%)

KFCM-S 4 0.50 50 0.54 54
SKFCMT 4 0.75 75 0.76 76
SKFCMTER 4 0.77 77 0.78 78

(a) (b)

Fig. 3. (a) Random data. (b) Corrupted image.

(a) (b)

Fig. 4. (a) Image by Standard FCM. (b) Clusters by Standard FCM.
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Standard FCM. The Standard FCM takes 20 iter-
ations to obtain the resulted clusters.

Now we introduce our proposed method
SKFCMT to an arti¯cial image to test its e®ect on
performance. We set the initial cluster centers as 3.5

and 11.5. Figures 5(a) and 5(b) show the results of
proposed SKFCMT under the improperly ordered
di®erent values of synthetic image. It is observed
from Fig. 5(b) that the proposed SKFCMT FCM
reduces the misclassi¯cation in colors and achieves

(a) (b)

Fig. 5. (a) Clusters by SKFCMT. (b) Image by SKFCMT.

(a) (b)

Fig. 6. (a) Clusters by SKFCMTER. (b) Image by SKFCMTER.
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better results than Standard FCM. The algorithm
obtains the results after seven iterations of the
algorithm.

Now we take proposed method SKFCMTER for
implementing it to synthetic image. To test its e®ect
on performance, we have initialized two cluster
centers as 3.5 and 11.5 and divided the synthetic
image into two partitions. Figures 6(a) and 6(b)
show the results of proposed SKFCMTER. From
Fig. 6(b), the numbers of misclassi¯ed objects
reduced much and there are no improperly ordered
colors on image. It can also be seen from Fig. 6(b)
that the proposed method is superior to the corre-
sponding proposed method SKFCMTER. Accord-
ing to Figs. 5(b) and 6(b), we know that under
experimental approach of synthetic image, the
proposed SKFCMT and SKFCMTER still achieve
much better performance than the Standard FCM.

Table 2 shows the comparison of the number of
iterations in the experiment of Standard FCM and
proposed methods on synthetic image. The number
of prototypes or centers was set as two. The Stan-
dard FCM takes 20 iterations to complete the
experimental work on synthetic image for clustering
it into two partitions. From Table 2, it is clear that
our proposed methods achieve results with much
less iterations than the Standard FCM. It is clear
from our above observation that the proposed
methods need less runtime to complete the exper-
imental work.

5. Conclusions

In this paper, novel robust segmentation algorithms
based on conventional FCM for image clustering
were introduced. The proposed algorithms can
detect the clusters of an image by overcoming the
noise sensitiveness and other imaging artifacts of
known FCM clustering algorithms and their var-
iants. This was obtained by modifying the objective
function in the traditional KFCM algorithm using
concepts such as tolerant vector, entropy term,
neighborhood attraction of each pixels, and a

spatial penalty on the membership functions. The
modi¯ed kernel-induced distance measure aims to
guarantee the robustness both to noise and outliers.
The e±cacy of the proposed segmentation algor-
ithms was tested through experimental study on
real DCE-BMRIs and arti¯cial images. The seg-
mentation accuracy of the proposed segmentation
algorithms was validated by using silhouette cluster
validity. The results of this paper have shown that
the proposed algorithms have more robustness to
noises, outliers, and other artifacts than other
existing algorithms. Particularly, the proposed
method SKFCMTER acquired accurate segmenta-
tion result while balancing through between the
noise and image details and concurrently enhancing
the clustering performance among the other
methods. And this e®ort, we hope that the proposed
SKFCMTER algorithm is a capable technique for
improving the e±ciency of segmentation in DCE-
BMR images.
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